A Measure & Conquer Approach for the Analysis of Exact Algorithms

Fabrizio Grandoni

Tor Vergata Rome grandoni@disp.uniroma2.it

The Importance of Being Tight

• (Accurately) measuring the size of relevant quantities is a crucial step in science and engineering

• Computer science, and in particular algorithm design, is not an exception

• Tight measures of (worst-case) time/space complexities, approximation ratios etc. are crucial to understand how good an algorithm is, and whether there is room for improvement

The Importance of Being Tight

• Tight bounds sometimes are shown years after the design of an algorithm

• Still, for several poly-time algorithms we are able to provide tight running time bounds

EG: The worst-case running time of MergeSort is $\Theta(n \log n)$

• Similarly, we have tight approximation bounds for many approximation algorithms

EG: The approximation ratio of the classical primal-dual algorithm for Steiner forest is exactly 2

The Importance of Being Tight

• The overall situation for exact (exp-time) algorithms for NP-hard problems is much worse

• Typically, tight time bounds are known only for trivial or almost trivial (enumerative) algorithms

• Nonetheless, most of the research in this field was devoted to the design of better algorithms, not of better analytical tools

 \Rightarrow The aim of this talk is introducing a non-standard analytical tool, sometimes named *Measure & Conquer*, which leads to much tighter (though possibly non-tight) running time bounds for branch & reduce exact algorithms

Exact Algorithms

Exact Algorithms

- The aim of exact algorithms is solving NP-hard problems exactly with the smallest possible (exponential) running time
- Exact algorithms are interesting for several reasons
 - Need for exact solutions (e.g. decision problems)
 - Reducing the running time from, say, O(2ⁿ) to O(1.41ⁿ) roughly doubles the size of the instances solvable within a given (large) time bound. This can't be achieved using faster computers!!
 - Classical approaches (heuristics, approximation algorithms, parameterized algorithms...) have limits and drawbacks (no guaranty, hardness of approximation, W[1]-completeness...)
 - New combinatorial and algorithmic challenges

Branch & Reduce Algorithms

• The most common exact algorithms are based on the *branch* & *reduce* paradigm

• The idea is to apply some *reduction rules* to reduce the size of the problem, and then branch on two or more subproblems which are solved recursively according to some *branching rules*

• The analysis of such recursive algorithms is typically based on the *bounded search tree* technique: a *measure* of the size of the subproblems is defined. This measure is used to lower bound the *progress* made by the algorithm at each branching step.

• Though these algorithms are often very complicated, measures used in their analysis are usually trivial (e.g., number of nodes or edges in the graph).

Bounded Search Trees

• Let P(n) be the number of base instances generated to solve a problem of size $n \ge 0$

• Suppose, as it is usual the case, that the application of reduction and branching rules takes polynomial time (in *n*). Assume also that the branching depth is bounded by a polynomial

• Then the running time of the algorithm is $O(P(n)n^{O(1)}) = O^*(P(n))$

 $\diamond O^*()$ suppresses polynomial factors

• It is possible to show by induction that $P(n) \le \lambda^n$ for a proper constant $\lambda > 1$

Bounded Search Trees

• Consider a branching/reduction rule b which generates $h(b)\geq 1$ subproblems. Let $n-\delta^b_j$ be the size of the j-th subproblem

- ♦ It must be $\delta_j^b \ge 0$ (indeed $\delta_j^b > 0$ for h(b) > 1)
- $\diamond (\delta_1^b, \dots, \delta_{h(b)}^b)$ is the branching vector

• We obtain the following inequalities

$$P(n) \le \sum_{j=1}^{h(b)} P(n-\delta_j^b) \le \sum_{j=1}^{h(b)} \lambda^{n-\delta_j^b} \le \lambda^n \implies f^b(\lambda) := 1 - \sum_{j=1}^{h(b)} \lambda^{-\delta_j^b} \le 0$$

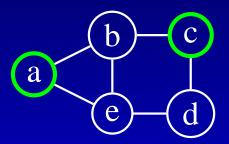
• This gives a lower bound $\lambda \ge \lambda^b$, where λ^b is the unique positive root of $f^b(\cdot)$ (*branching factor*).

• We can conclude that $\lambda = \max_{b} \{\lambda^{b}\}$

The Independent Set Problem

Independent Set

Def: Given G = (V, E), the maximum independent set problem (MIS) is to determine the maximum cardinality $\alpha(G)$ of a subset of pairwise non-adjacent nodes (*independent set*)



 $\alpha(G) = 2$

Known Results

- NP-hard [Karp'72]
- Not approximable within $O(n^{1-\epsilon})$ unless P = NP[Zucherman'06]
- W[1]-complete [Downey&Fellows'95].
- No exact $O(\lambda^{o(n)})$ algorithm unless SNP \subseteq SUBEXP [Impagliazzo,Paturi,Zane'01]

⇒ The best we can hope for is a $O(\lambda^n)$ exact algorithm for some small constant $\lambda \in (1, 2]$.

Known Results

- $O(1.261^n)$ poly-space [Tarjan&Trojanowski'77]
- $O(1.235^n)$ poly-space [Jian'86]
- $O(1.228^n)$ poly-space, $O(1.211^n)$ exp-space [Robson'86]
- better results for sparse graphs [Beigel'99, Chen,Kanj&Xia'03]

Thanks to Measure & Conquer, a *much simpler* poly-space algorithm (~ 10 lines of pseudo-code against ~ 100 lines in [Robson'86]) is shown to have time complexity O(1.221ⁿ)
 [Fomin, Grandoni, Kratsch'06]

 \Rightarrow We will consider a similar algorithm, and analyze it in a similar (but simplified) way

Reduction Rules

- Let us introduce a few standard reduction rules for MIS
 - ♦ connected components
 - ♦ domination
 - ♦ folding
 - ♦ mirroring
 - ٥ ...

• We will use only folding, but in the exercises the other rules might turn to be useful

Connected components

Lem 1: Given a graph G with connected components G_1, \ldots, G_h ,

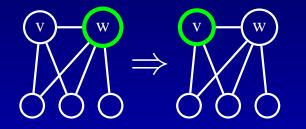
$$\alpha(G) = \sum_{i} \alpha(G_i)$$

Rem: One can solve the problems induced by the G_i 's independently

Domination

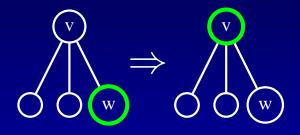
Lem 2: If there are two nodes v and w such that $N[v] \subseteq N[w]$, there is a maximum independent set which does not contain w

 $\diamond N[x] = N(x) \cup \{x\}$



Domination

Lem 3: For every node v, there is a maximum independent set which either contains v or at least two nodes in N(v).

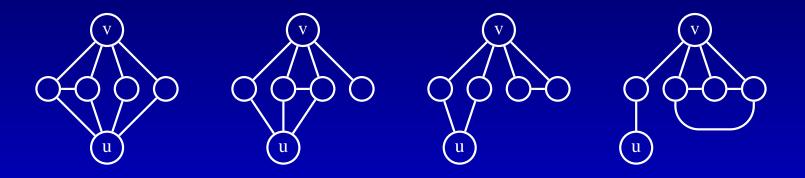


Exr 1: Prove Lemmas 1, 2, and 3

Mirroring

Def: A *mirror* of a node v is a node $u \in N^2(v)$ such that N(v)-N(u) is a (possibly empty) clique

- $N^2(v)$ are the nodes at distance 2 from v
- mirrors of v are denoted by M(v)



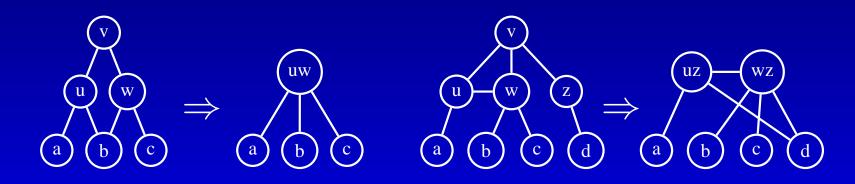
Mirroring

Lem 4: For any node v, $\alpha(G) = \max\{\alpha(G - v - M(v)), \alpha(G - N[v])\}$

Exr: Prove Lem 4 (Hint: use Lem 3)

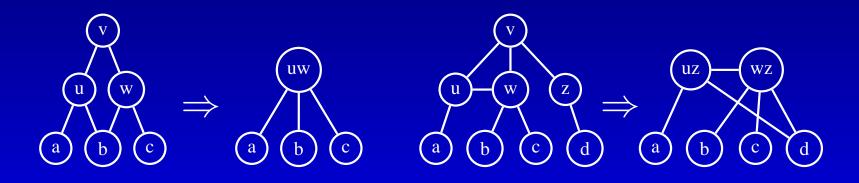
Def: Given a node v with no anti-triangle in N(v), folding v means

- replacing N[v] with a clique containing one node uw for each anti-edge uw of N(v);
- adding edges between each uw and $N(u) \cup N(w)-N[v]$.
- \diamond we use G_v to denote the graph after folding



Def: Given a node v with no anti-triangle in N(v), folding v means

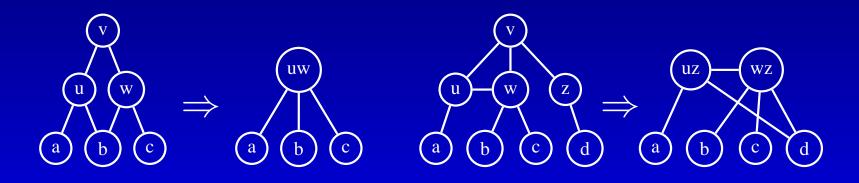
- replacing N[v] with a clique containing one node uw for each anti-edge uw of N(v);
- adding edges between each uw and $N(u) \cup N(w)-N[v]$.
- \diamond we use G_v to denote the graph after folding



Rem 1: Folding can increase the number of nodes!

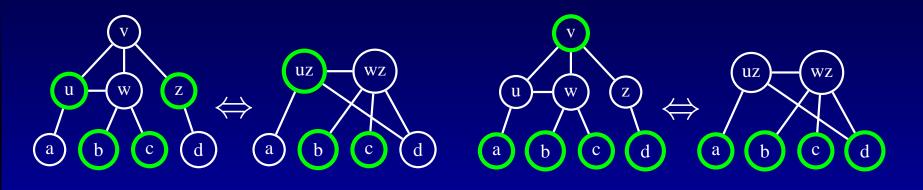
Def: Given a node v with no anti-triangle in N(v), folding v means

- replacing N[v] with a clique containing one node uw for each anti-edge uw of N(v);
- adding edges between each uw and $N(u) \cup N(w)-N[v]$.
- \diamond we use G_v to denote the graph after folding



Rem 2: Nodes of degree ≤ 2 are always *foldable*

Lem 5: For a foldable node $v, \alpha(G) = 1 + \alpha(G_v)$



Exr 3: Prove Lem 5 (Hint: use Lem 3)

Rem: Lem 5 includes a few standard reductions as special cases

W u W u) W (b) (c) (c)(a) b a c a c b) b v W W b (c)b a a c

A Simple MIS Algorithm

int mis(G) {
 if (G = \emptyset) return 0; //Base case
 //Folding
 Take v of minimum degree;
 if (d(v) \leq 2) return 1 + mis(G_v);
 //"Greedy" branching
 Take v of maximum degree;
 return max{ mis(G - v), 1 + mis(G - N[v]) };

Thr: Algorithm mis solves MIS in $O^*(1.33^n)$ time

Thr: Algorithm mis solves MIS in $O^*(1.33^n)$ time

Prf:

• Let P(n) be the number of base instances generated by the algorithm. We will show by induction that $P(n) \leq \lambda^n$ for $\lambda < 1.33$

• In the base case $P(0) = 1 \le \lambda^0$

• When the algorithm folds a node, the number of nodes decreases by at least one

$$P(n) \le P(n-1) \le \lambda^{n-1} \le \lambda^n$$

Thr: Algorithm mis solves MIS in $O^*(1.33^n)$ time

Prf:

• When the algorithm branches at a node v with $d(v) \ge 4$, in one subproblem it removes 1 node (i.e. v), and in the other it removes $1 + d(v) \ge 5$ nodes (i.e. N[v]):

$$P(n) \le P(n-1) + P(n-5)$$

$$\le \lambda^{n-1} + \lambda^{n-5} \le \lambda^n \qquad (\lambda \ge 1.32...)$$

Thr: Algorithm mis solves MIS in $O^*(1.33^n)$ time

Prf:

• Otherwise, the algorithm branches at a node v of degree exactly 3, hence removing either 1 or 4 nodes. However, in the first case a node of degree 2 is folded afterwards, with the removal of at least 2 more nodes

$$P(n) \le P(n-3) + P(n-4)$$

$$\le \lambda^{n-3} + \lambda^{n-4} \le \lambda^n \qquad (\lambda \ge 1.22...)$$

Thr: Algorithm mis solves MIS in $O^*(1.33^n)$ time

Prf:

• Otherwise, the algorithm branches at a node v of degree exactly 3, hence removing either 1 or 4 nodes. However, in the first case a node of degree 2 is folded afterwards, with the removal of at least 2 more nodes

$$P(n) \le P(n-3) + P(n-4)$$

$$\le \lambda^{n-3} + \lambda^{n-4} \le \lambda^n \qquad (\lambda \ge 1.22...)$$

Rem: This is the best one can get with a standard analysis

Measure & Conquer

Measure & Conquer

• The classical approach to *improve* on mis would be designing refined branching and reduction rules. In particular, one tries to improve on the *tight* recurrences. The analysis is then performed in a similar fashion

• In the standard analysis, *n* is both the measure used in the analysis and the quantity in terms of which the final time bound is expressed

• However, one is free to use any, possibly sophisticated, measure m in the analysis, provided that $m \le f(n)$ for some known function f

• This way, one achieves a time bound of the kind $O^*(\lambda^m) = O^*(\lambda^{f(n)})$, which is in the desired form

Measure & Conquer

• The idea behind Measure & Conquer is focusing on the choice of the measure

• In fact, a more sophisticated measure may capture phenomena which standard measures are not able to exploit, and hence lead to a tighter analysis of a *given* algorithm

• We next show how to get a much better time bound for mis thanks to a better measure of subproblems size (without changing the algorithm!)

• We will start by introducing an alternative, simple, measure. This measure does not immediately give a better time bound, but it will be a good starting point to define a really better measure

An Alternative Measure

- \bullet Nodes of degree ≤ 2 can be removed without branching
- Hence they do not really contribute to the *size* of the problem

• For example, if the maximum degree is 2, then mis solves the problem in polynomial time!

Idea: define the size of the problem to be the number of nodes of degree at least 3

An Alternative Measure

Def: Let n_i be the number of nodes of degree i, and $n_{\geq i} = \sum_{j\geq i} n_j$

• We define the size of the problem to be $m = n_{\geq 3}$ (rather than m = n)

Rem: $m = n_{\geq 3} \leq n$. Hence, if we prove a running time bound in $O^*(\lambda^m)$, we immediately get a $O^*(\lambda^n)$ time bound

An Alternative Analysis

Thr: Algorithm mis solves MIS in $O^*(1.33^n)$ time

Thr: Algorithm mis solves MIS in $O^*(1.33^n)$ time

(Alternative) Prf:

• Let us define G a base instance if the maximum degree in G is 2 (which implies $m = n_{\geq 3} = 0$)

• Let moreover P(m) be the number of base instances generated by the algorithm to solve an instance of size m

• By the usual argument the running time is $O^*(P(m))$. We prove by induction that $P(m) \le \lambda^m$ for $\lambda < 1.33$

Thr: Algorithm mis solves MIS in $O^*(1.33^n)$ time

(Alternative) Prf:

• In the base case m = 0. Thus

 $P(0) = 1 \le \lambda^0$

• Let m' be the size of the problem after folding a node v. It is sufficient to show that $m' \leq m$, from which

$$P(m) \le P(m') \le \lambda^{m'} \le \lambda^m$$

• This condition trivially holds when folding only removes nodes

Thr: Algorithm mis solves MIS in $O^*(1.33^n)$ time

(Alternative) Prf:

• In the remaining case $N(v) = \{u, w\}$ with $uw \notin E$. In this case we remove $\{v, u, w\}$ and add a node uw with $d(uw) \le d(u) + d(w) - 2$. By case analysis $m' \le m$ also in this case

d(u)	d(w)	d(uw)	m'
2	2	2	m
2	≥ 3	≥ 3	m - 1 + 1
≥ 3	≥ 3	≥ 4	m - 2 + 1

Thr: Algorithm mis solves MIS in $O^*(1.33^n)$ time

(Alternative) Prf:

• Suppose now that we branch at a node v with $d(v) \ge 4$. Note that all the nodes of the graph have degree ≥ 3 (since we do not fold). For $t_3 = |\{u \in N(v) : d(u) = 3\}|$,

$$P(m) \le P(m - 1 - t_3) + P(m - 1 - d(v))$$

$$\le P(m - 1) + P(m - 5) \le \lambda^{m - 1} + \lambda^{m - 5} \le \lambda^m \quad (\lambda \ge 1.32...)$$

• Eventually, consider branching at v, d(v) = 3. In this case we remove either 1 or 4 nodes of degree 3. However, in the first case the degree of the 3 neighbors of v drops from 3 to 2, with a consequent further reduction of the size by 3

 $P(m) \le P(m-4) + P(m-4) \le \lambda^{m-4} + \lambda^{m-4} \le \lambda^m \quad (\lambda \ge 1.18...)$

A Better Measure

• When we branch at a node of large degree, we decrement by 1 the degree of many other nodes

• This is beneficial on long term, since we can remove nodes of degree ≤ 2 without branching

• We are not exploiting this fact in the current analysis

Idea: assign a larger weight $\omega_i \leq 1$ to nodes of larger degree *i*, and let the size of the problem be the sum of node weights. This way, when the degree of a node decreases, the size of the problem decreases as well

A Better Measure

Def:

• for a constant $\omega \in (0, 1]$ to be fixed later,

$$\omega_i = \begin{cases} 0 & \text{if } i \leq 2; \\ \omega & \text{if } i = 3; \\ 1 & \text{otherwise.} \end{cases}$$

• Let $\omega(v) = \omega_{d(v)}$ • the size m = m(G) of G is $m = \sum_{v \in V(G)} \omega(v) = \omega \cdot n_3 + n_{\ge 4}$

Thr: Algorithm mis solves MIS in $O^*(1.29^n)$ time

Prf:

• With the usual notation, let us show that $P(m) \leq \lambda^m$ for $\lambda < 1.29$

• In the base case m = 0, $P(0) = 1 \le \lambda^0$

• In case of folding, let m' be the size of the subproblem. it is sufficient to show that $m' \leq m$. Then

$$P(m) \le P(m') \le \lambda^{m'} \le \lambda^m$$

• This condition is satisfied when nodes are only removed (being the weight increasing with the degree)

Thr: Algorithm mis solves MIS in $O^*(1.29^n)$ time

Prf:

• The unique remaining case is that $N(v) = \{u, w\}$, with u and w not adjacent. In this case we remove $\{v, u, w\}$, and add a node uw with $d(uw) \le d(u) + d(w) - 2$. Hence it is sufficient to show that

 $\omega(v) + \omega(u) + \omega(w) - \omega(sw) = \omega(u) + \omega(w) - \omega(uw) \ge 0$

Thr: Algorithm mis solves MIS in $O^*(1.29^n)$ time

Prf:

• By a simple case analysis

d(u)	d(w)	d(uw)	$\omega(u) + \omega(w) - \omega(uw) \ge 0$
2	2	2	$0 + 0 - 0 \ge 0$
2	3	3	$0 + \omega - \omega \ge 0$
2	≥ 4	≥ 4	$0 + 1 - 1 \ge 0$
3	3	4	$\omega+\omega-1\geq 0$
3	≥ 4	≥ 4	$\omega+1-1\geq 0$
≥ 4	≥ 4	≥ 4	$1+1-1 \ge 0$

• We can conclude that $\omega \geq \frac{1}{2}$ (new constraint on the weights!)

Thr: Algorithm mis solves MIS in $O^*(1.29^n)$ time

Prf:

• Consider now branching at a node $v, d(v) \ge 5$. Let d_i be the degree of the *i*th neighbor of v (which thus has weight ω_{d_i}). Then

$$P(m) \le P(m - \omega_{d(v)} - \sum_{i} (\omega_{d_i} - \omega_{d_i-1})) + P(m - \omega_{d(v)} - \sum_{i} \omega_{d_i})$$

$$\le P(m - 1 - \sum_{i=1}^{5} (\omega_{d_i} - \omega_{d_i-1})) + P(s - 1 - \sum_{i=1}^{5} \omega_{d_i})$$

• Observe that we can replace $d_i \ge 6$ with $d_i = 5$. In fact in both cases $\omega_{d_i} = 1$ and $\omega_{d_i} - \omega_{d_i-1} = 0$. Hence we can assume $d_i \in \{3, 4, 5\}$ (finite number of recurrences!!!)

Thr: Algorithm mis solves MIS in $O^*(1.29^n)$ time

Prf:

By case enumeration

 $P(m) \leq \begin{cases} P(m-1-5\cdot\omega-0\cdot(1-\omega)-0\cdot0) + P(m-1-5\cdot\omega-0\cdot1-0\cdot1) \\ P(m-1-4\cdot\omega-1\cdot(1-\omega)-0\cdot0) + P(m-1-4\cdot\omega-1\cdot1-0\cdot1) \\ P(m-1-4\cdot\omega-0\cdot(1-\omega)-1\cdot0) + P(m-1-4\cdot\omega-0\cdot1-1\cdot1) \\ P(m-1-3\cdot\omega-2\cdot(1-\omega)-0\cdot0) + P(m-1-3\cdot\omega-2\cdot1-0\cdot1) \end{cases}$

 $P(m - 1 - 0 \cdot \omega - 0 \cdot (1 - \omega) - 5 \cdot 0) + P(m - 1 - 0 \cdot \omega - 0 \cdot 1 - 5 \cdot 1)$

Thr: Algorithm mis solves MIS in $O^*(1.29^n)$ time

Prf:

• Consider now branching at a node v, d(v) = 4. By a similar argument (but with $d_i \in \{3, 4\}$)

$$P(m) \leq \begin{cases} P(m-1-4\cdot\omega-0\cdot(1-\omega)) + P(m-1-4\cdot\omega-0\cdot1) \\ P(m-1-3\cdot\omega-1\cdot(1-\omega)) + P(m-1-3\cdot\omega-1\cdot1) \\ P(m-1-2\cdot\omega-2\cdot(1-\omega)) + P(m-1-2\cdot\omega-2\cdot1) \\ P(m-1-1\cdot\omega-3\cdot(1-\omega)) + P(m-1-1\cdot\omega-3\cdot1) \\ P(m-1-0\cdot\omega-4\cdot(1-\omega)) + P(m-1-0\cdot\omega-4\cdot1) \end{cases}$$

Thr: Algorithm mis solves MIS in $O^*(1.29^n)$ time **Prf:**

• Consider eventually branching at a node v, d(v) = 3. By an analogous argument (but with $\omega(v) = \omega_3 = \omega$ and $d_i = 3$)

$$P(m) \le P(m - \omega - 3\omega) + P(m - \omega - 3\omega)$$

• For every $\omega \in [0.5, 1]$, the set of recurrences above provides an upper bound $\lambda(\omega)$ on λ . Our goal is minimizing $\lambda(\omega)$ (hence getting a better time bound)

• Via exhaustive (grid) enumeration, we obtained $\omega = 0.7$ which gives $\lambda(\omega) < 1.29$

An Even Better Measure

• We can extend the previous approach to larger degrees

$$\omega_{i} = \begin{cases} 0 & \text{if } i \leq 2; \\ \omega & \text{if } i = 3; \\ \omega' & \text{if } i = 4; \\ 1 & \text{otherwise.} \end{cases}$$

where $0 < \omega \le \omega' \le 1$

Thr 3: Algorithm mis solves MIS in $O^*(1.26^n)$ time

Exercises

Exr 5: Prove Thr 3 (Hint: $\omega = 0.750, \omega' = 0.951$)

Exr 6: What do you expect that would happen if we added one extra weight $\omega_5 = \omega''$? Can you guess any pattern?

Exr 7*: Design a better algorithm for MIS, using possibly the other mentioned reduction rules. Analyze your algorithm in the standard way and via Measure & Conquer

Exr 8*: Can you imagine an alternative, promising measure for MIS?

Quasiconvex Analysis of Backtracking Algorithms

Optimal Weights Computation

• When the number of distinct weights grows, an exhaustive exploration might be too slow

• We next describe a general tool to perform this computation in an (exponentially) faster way

Multivariate Recurrences

• Consider a collection of integral *measures* m_1, \ldots, m_d , describing different aspects of the size of the problem considered

EG: In the analysis of mis we used $m_1 = n_3$ and $m_2 = n_{\geq 4}$

• These measure naturally induce a set of multivariate recurrence of the following kind for each branching *b*

$$P(m_1, \dots, m_d) \le P(m_1 - \delta_{1,1}^b, \dots, m_d - \delta_{d,1}^b) + \dots + P(m_1 - \delta_{1,h(b)}^b, \dots, m_d - \delta_{d,h(b)}^b)$$

Rem: some of the $\delta_{i,j}^b$ might be negative. For example, deleting one edge incident to a node of degree 4, we decrease $n_{\geq 4}$ but increase n_3

Multivariate Recurrences

• Solving multivariate recurrences is typically rather complicated

 A common alternative is turning them into univariate recurrences by considering a linear combination of the measures (*aggregated measure*)

$$m(\alpha) = \alpha_1 \, m_1 + \ldots + \alpha_d \, m_d$$

• The weights α_i must satisfy the condition $\delta_j^b := \sum_i \alpha_i \, \delta_{i,j}^b > 0$, i.e. $m(\alpha)$ decreases in each subproblem (we allow ≥ 0 for h = 1)

EG: In the analysis of mis we used $\alpha_1 = \omega$ and $\alpha_2 = 1$. The condition is satisfied for every $\omega \in [0.5, 1]$

Multivariate Recurrences

• The resulting set of univariate recurrences can be solved in the standard way (for fixed weights)

• In particular, for each branching b we compute the (unique) positive root $\lambda^b(\alpha)$ of

$$f^b(\lambda, \alpha) := 1 - \sum_j \lambda^{-\sum_i \alpha_i \delta^b_{i,j}}$$

• This gives a running time bound of the kind $O^*(\lambda(\alpha)^{\sum_i \alpha_i m_i})$ where

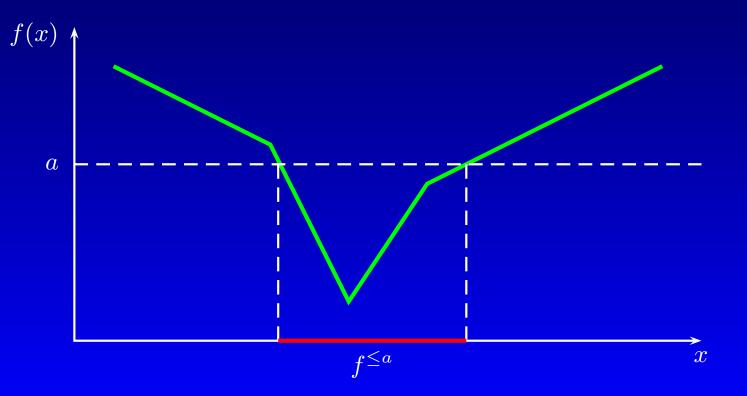
$$\lambda(\alpha) := \max_{b} \lambda^{b}(\alpha)$$

Quasiconvex Functions

Def: A function $f: D \to \mathbb{R}$, with $D \subseteq \mathbb{R}^d$ convex, is quasiconvex if the set

$$f^{\leq a} := \{x \in D : f(x) \leq a\}$$

is convex for any $a \in \mathbb{R}$



Quasiconvex Functions

Thr [Eppstein'01]: Function $\lambda(\alpha)$, $\alpha \in \mathbb{R}^d$, is quasiconvex **Prf:**

• Since the max of a finite number of quasiconvex functions is quasiconvex, it is sufficient to show that each $\lambda^b(\alpha)$ is quasiconvex

• $\lambda^{b}(\alpha)$ is the positive root of $f^{b}(\lambda, \alpha) = 1 - \sum_{j} \lambda^{-\sum_{i} \alpha_{i} \delta^{b}_{i,j}}$

• Hence

 $\lambda^{b,\leq a} = \{ \alpha \in \mathbb{R}^d : \lambda^b(\alpha) \leq a \} = \{ \alpha \in \mathbb{R}^d : \sum_j a^{-\sum_i \alpha_i \delta_{i,j}^b} \leq 1 \}$

• $g^b(\alpha) := \sum_j a^{-\sum_i \alpha_i \delta_{i,j}^b}$ is convex as sum of convex functions, and trivially its level sets are convex, including $g^{b,\leq 1}$

Cor: Function $\lambda(\alpha)$ is quasiconvex over any convex $D \subseteq \mathbb{R}^d$

Applications to M&C

• We can use these facts to optimize the weights much faster in the Measure & Conquer framework

• Suppose we define a set of linear constraints on the weights such that

(a) the size of each subproblem does not increase
(b) the initial measure m = m(α) is upper bounded by n, where n is a *standard* measure for the problem

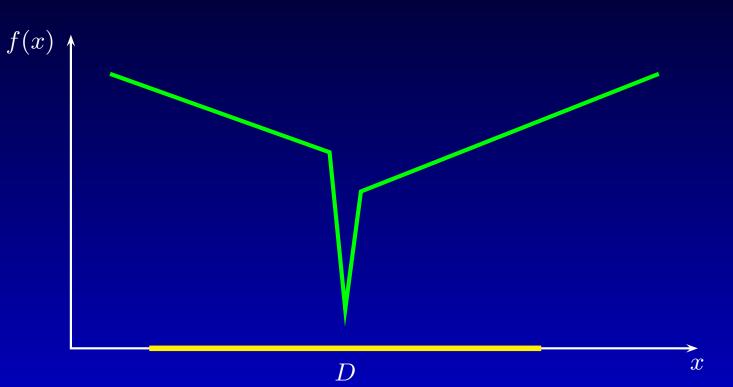
• This gives a convex domain of weights α . On that domain we can compute the minimum value $\lambda(\tilde{\alpha})$ of the quasiconvex function $\lambda(\alpha)$

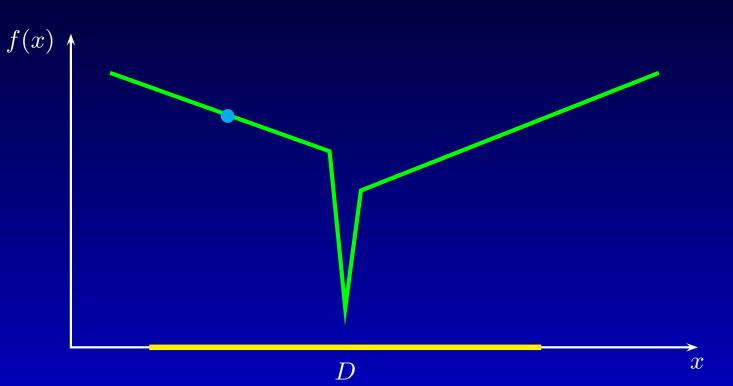
• The resulting running time is $O^*(\lambda(\tilde{\alpha})^{m(\tilde{\alpha})}) = O^*(\lambda(\tilde{\alpha})^n)$

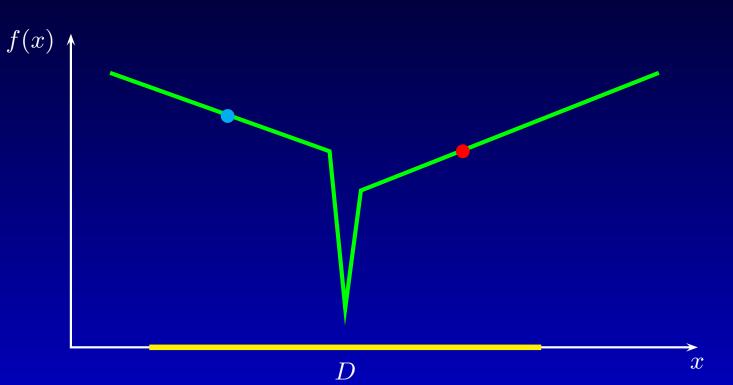
• There are known techniques to find efficiently the minimum of a quasi-convex functions (see e.g. [Eppstein'01,Gaspers])

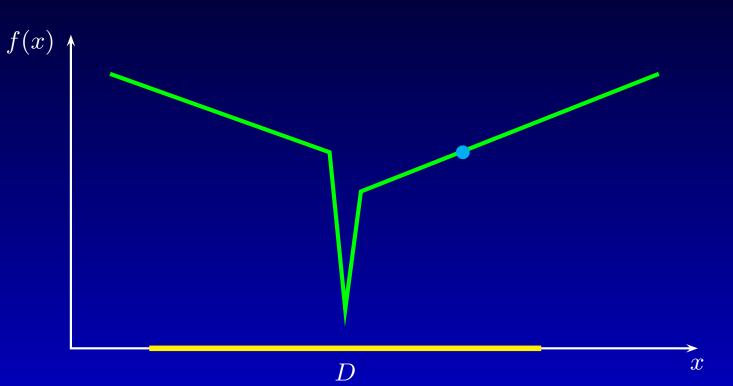
• We successfully applied the following, very fast and easy to implement, approach based on *randomized local search* (in simulated annealing style)

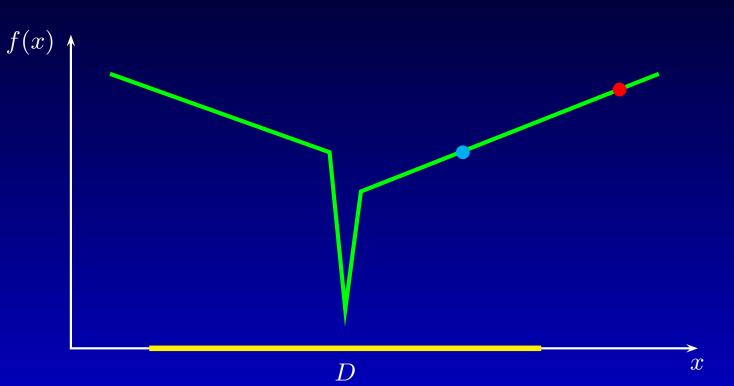
- $\diamond\,$ We start from any feasible initial value α
- $\diamond\,$ We add to it a random vector in a given range $[-\Delta,\Delta]^d$
- ♦ If the resulting α' is feasible and gives $\lambda(\alpha') \le \lambda(\alpha)$, we set $\alpha = \alpha'$
- ♦ We iterate the process, reducing the value of ∆ if no improvement is achieved for a large number of steps
 ♦ The process halts when ∆ drops below a given value ∆'

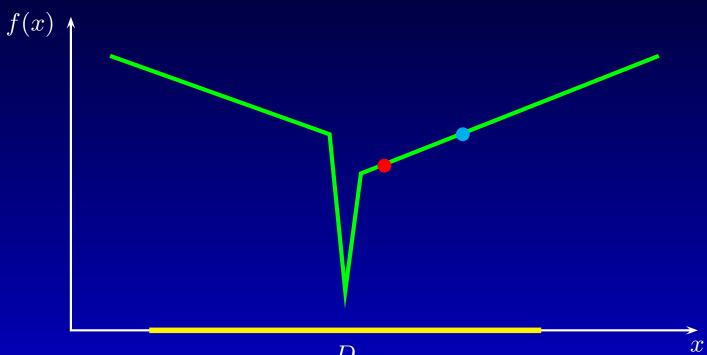




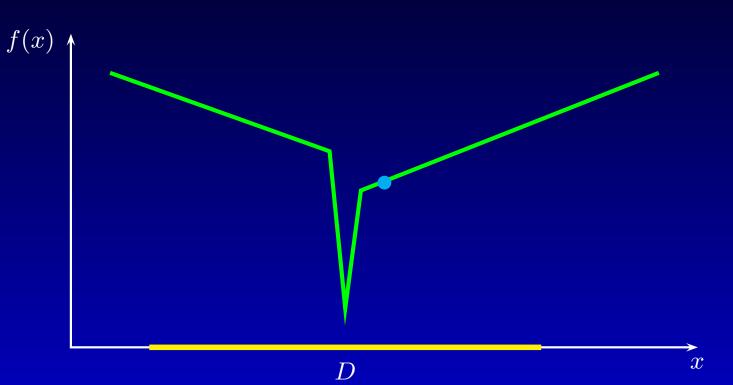


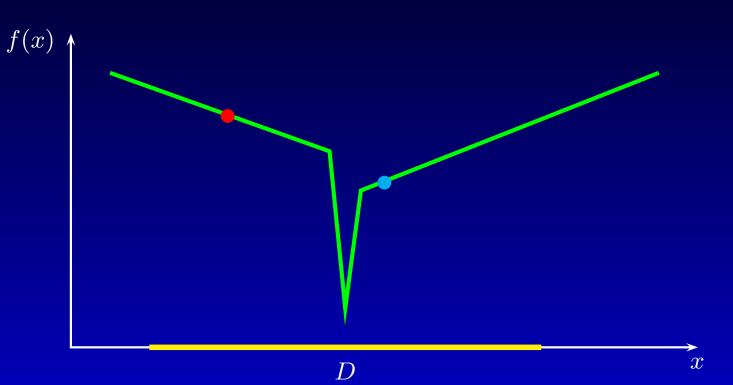


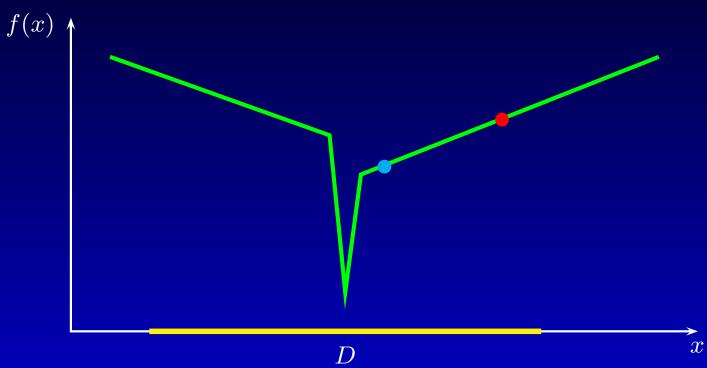


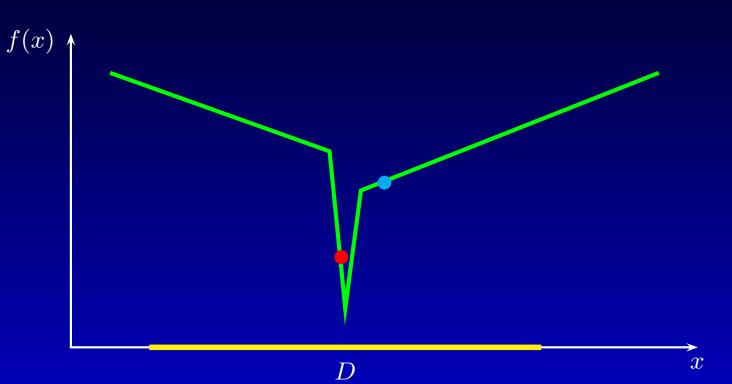


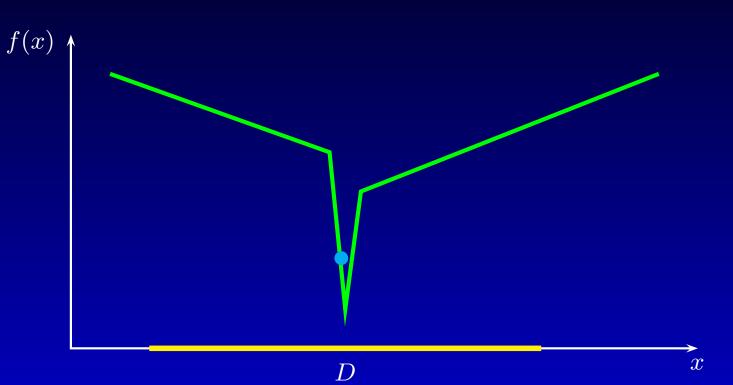
D

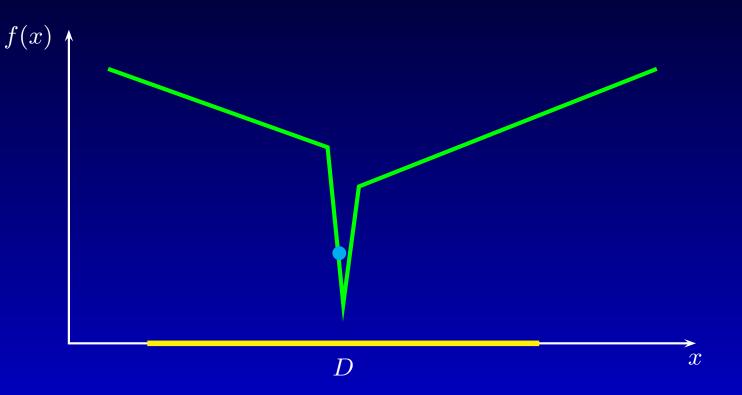












Rem: This algorithm does not guarantee closeness to the optimal $\lambda(\tilde{\alpha})$. However it is accurate in practice. More important, it provides *feasible* upper bounds

Lower Bounds

Lower Bounds

• Measure & Conquer sometimes leads to much better running time bounds

• Still, these bounds might not be tight

• Hence, it makes sense to search for (exponential) lower bounds on the running time of the algorithm considered (not of the problem!)

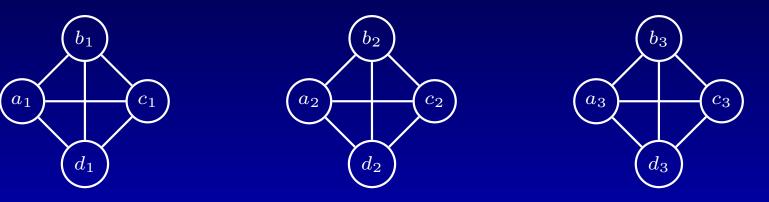
• A lower bound may give an idea of how far the analysis is from being tight

A Lower Bound for mis

Thr 4: The running time of mis is $\Omega(2^{n/4})$

Prf:

• Consider the graph G_k consisting of k = n/4 copies of a K_4



• The algorithm might branch at a_1 . In both subproblems $\{a_1, b_1, c_1, d_1\}$ is removed, either immediately or later on by folding. This leaves a G_{k-1}

• We obtain a recurrence of the type $P(n) \ge 2P(n-4)$ for the number of subproblems, which gives $P(n) \ge 2^{n/4}$

A Lower Bound for mis

Thr 4: The running time of mis is $\Omega(2^{n/4})$

Exr 8: Find a larger lower bound on the running time of mis (Hint: $\Omega(3^{n/6}) = \Omega(1.20^n)$, maybe better)

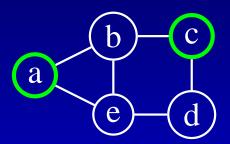
Exr 9*: Consider the variant of mis where the algorithm, after the base case, branches on connected components when possible. Can you find a good lower bound on the running time of this modified algorithm?

Rem: Typically finding lower bounds on connected graphs is much more complicated

Applications of Measure & Conquer

Independent Set

Def: Given G = (V, E), the *independent set* problem (MIS) is to determine the maximum cardinality $\alpha(G)$ of a subset of pairwise non-adjacent nodes (*independent set*)



 $\alpha(G) = 2$

Independent Set

Thr [Fomin,Grandoni,Kratsch'06-'09]: MIS can be solved in $O^*(1.221^n)$ time and polynomial space

Prf:

}

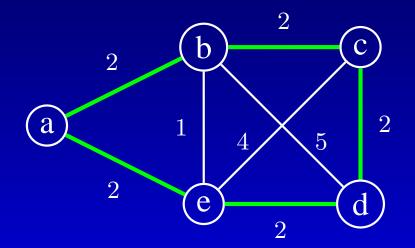
• Simple branching algorithm

int mis(G) { if($|V(G)| \leq 1$) return |V(G)|; if(\exists component $C \subset G$) return mis(C)+mis(G - C); if(\exists vertices v and w: $N[w] \subseteq N[v]$) return mis($G - \{v\}$); if(\exists a vertex v, with d(v) = 2) return 1+mis(G_v); select a vertex v of maximum degree, which minimizes |E(N(v))|; return max{mis($G - \{v\} - M(v)$), 1+mis(G - N[v])};

• Analysis similar to the one outlined before

Traveling Salesman Problem

Def: Given a weighted G = (V, E), the *traveling salesman* problem problem (TSP) is to compute a minimum weight cycle spanning V (TSP tour)



Traveling Salesman Problem

Thr [Eppstein'03-'07]: TSP can be solved in $O^*(1.260^n)$ time in cubic graphs

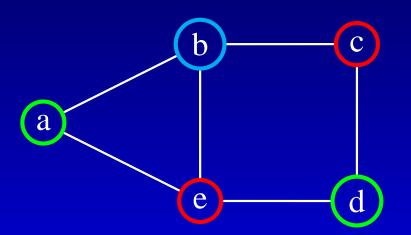
Prf:

- Design a non-trivial branching algorithm
- Analyze it using, as measure, $|V| |F| |C| \le |V|$

• Here F is a set of *forced* edges and C the set of 4-cycles of G which induce connected components in G - F

3-Coloring

Def: Given G = (V, E) and a set of 3 colors, the 3-*coloring* problem (3-COL) is to find an assignment of colors to nodes such that adjacent nodes are colored differently



3-Coloring

Def: Given a set of variables on domains of size $\leq a$ and a set of constraints each one involving at most *b* variables, the (a, b)-*constraint satisfaction* problem (CSP) is to find an assignment of the variables satisfying all the constraints

Rem: 3-COL is a special case of (3, 2)-CSP

3-Coloring

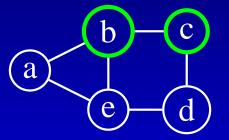
Thr [Beigel,Eppstein'00-'05]: 3-COL can be solved in $O^*(1.329^n)$ time

Prf:

- Non-trivial reduction to (3, 2)-CSP
- Non-trivial branching algorithm solving (4, 2)-CSP in $O^*(1.365^n)$ time

• In the analysis the measure is a linear combination $n_3 + \alpha n_4$ of the number of variables with domain of size 3 and 4 (variables with smaller domain can be filtered out)

Def: Given G = (V, E), the *dominating set* problem (MDS) is to determine the minimum cardinality $\delta(G)$ of a subset of nodes D such that any node in V - D is adjacent to some node in D (*dominating set*)

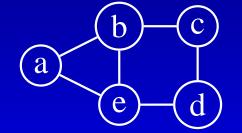


 $\delta(G) = 2$

Def: Given a universe \mathcal{U} and a collection of subsets $S \subseteq 2^{\mathcal{U}}$, the *set cover* problem (MSC) is to determine a minimum cardinality subcollection $\mathcal{C} \subseteq S$ such that $\bigcup_{S \in \mathcal{C}} S = \mathcal{U}$ (*set cover*)

Rem: MDS can reduced to MSC by letting $\mathcal{U} = V$ and $\mathcal{S} = \{N[v] : v \in V\}$. This instance has n subsets and n elements

$$\mathcal{U} = \{a, b, c, d, e\}$$



$$S_{a} = \{a, b, e\}$$

$$S_{b} = \{a, b, c, e\}$$

$$S_{c} = \{b, c, d\}$$

$$S_{d} = \{c, d, e\}$$

$$S_{e} = \{a, b, d, e\}$$

Thr [Grandoni'04-'06]: MDS can be solved in $O^*(1.803^n)$ time

Proof: Design a simple algorithm solving MSC in $O^*(1.381^{|\mathcal{U}|+|\mathcal{S}|})$ time $\Rightarrow O^*(1.381^{2n})$ time algo for MDS

int msc(S) { if(|S| = 0) return 0; if($\exists S, R \in S : S \subseteq R$) return msc($S \setminus \{S\}$); if($\exists u \in U(S) \exists$ a unique $S \in S : u \in S$) return 1+msc(del(S, S)); take $S \in S$ of maximum cardinality; if(|S| = 2) return poly-msc(S) return min{msc($S \setminus \{S\}$), 1+msc(del(S, S))};

Exr 10: Prove the theorem above

Thr [Fomin,Grandoni,Kratsch'05-'09]: MDS can be solved in $O^*(1.527^n)$ time

Proof:

• Consider the same reduction to MSC and the same algorithm as before

• Give a different weight to sets of different cardinality and to elements of different frequency

Exr 11*: Prove the theorem above

Thr [van Rooij,Bodlaender'08]: MDS can be solved in $O^*(1.507^n)$ time

Variants of Dominating Set

Def: Given G = (V, E), the *minimum independent dominating set* problem (MIDS) is to determine the minimum cardinality of a dominating set of G which is also an independent set

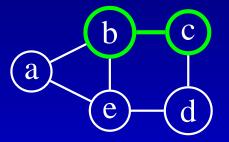
Thr [Gasper,Liedloff'06]: MIDS can be solved in $O^*(1.358^n)$ time

Def: Given G = (V, E), the *minimum dominating clique* problem (MDC) is to determine the minimum cardinality of a dominating set of G which is also a clique

Thr [Kratsch,Liedloff'07]: MDC can be solved in $O^*(1.324^n)$ time

Connected Dominating Set

Def: Given G = (V, E), the *connected dominating set* problem (ConDomS) is to determine the minimum cardinality $\delta'(G)$ of a dominating set of G which induces a connected graph (*connected dominating set*)



 $\delta'(G) = 2$

Connected Dominating Set

Thr [Fomin,Grandoni,Kratsch'06-'08]: Connected dominating set can be solved in $O^*(1.941^n)$ time

Proof:

• Design an algorithm which gradually expands a connected graph, until it becomes dominating

• Assign a different weight to nodes dominating a different number of nodes not yet dominated

• Assign an extra weight to nodes which are still not selected nor discarded, giving a smaller extra weight to nodes whose removal makes the problem infeasible

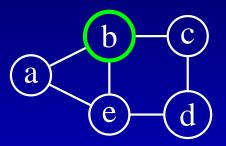
Rem: without the refined measure one does not improve on trivial 2^n !

Combinatorial Bounds via M&C

- M&C can be used to derive better combinatorial bounds
- Thr [Fomin,Grandoni,Pyatkin,Stepanov'05-'08]: An *n*-node graph has $O^*(1.716^n)$ minimal dominating sets
- **Prf:** Design a listing algorithm and analyze it via M&C
- Listing algorithms can often be used to solve weighted problems, where reduction rules are harder to get
- Thr [Fomin,Grandoni,Pyatkin,Stepanov'05]: The weighted minimum dominating set problem can be solved in $O^*(1.578^n)$ time
- **Prf:** Use a variant of the listing algorithm above, implementing a trivial weighted set cover reduction rule

Feedback Vertex Set

Def: Given G = (V, E), the *feedback vertex set* problem (FVS) is to determine the minimum cardinality $\phi(G)$ of a subset of nodes whose removal makes *G* acyclic (*feedback vertex set*)



 $\phi(G) = 1$

Feedback Vertex Set

Thr [Razgon+Fomin,Gaspers,Pyatkin'06-'08]: FVS can be solved in $O^*(1.755^n)$ time

Prf:

• Design an algorithm based on branching rules and maximum independent sets computation to solve the equivalent maximum induced forest problem

• Analyze it using, as measure,

 $0 \cdot |F| + 1 \cdot |N(t)| + (1 + \alpha)|V - F - N(t)|$

• Here F is a set of forced nodes and t is an *active* node

Apologies

I apologize for related and improved results that I forgot to mention

THANKS!!!